Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа№5»

Рассмотрена на заседании ШМО Протокол №1 от 28.08.24 г.

Утверждена
приказом директора
МАОУ «СОШ №5»
_____ Рудникова Н.Д.
от 29.08.24 № 335 о/д

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Химия вокруг нас» для обучающихся 8-9 класса

на 2024 – 2025 учебный год

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ УРОВЕНЬ: БАЗОВЫЙ

Возраст обучающихся 13-15 лет

Срок реализации 1 год

Составитель:

Раменских Татьяна Владимировна,

учитель химии

Пояснительная записка

Данная образовательная программа обеспечивает усвоение учащимися важнейших химических законов, теорий и понятий; формирует представление о роли химии в окружающем мире и жизни человека. При этом основное внимание уделяется сущности химических реакций и методам их осуществления. Одним из основных принципов построения программы является принцип доступности. Экспериментальные данные, полученные учащимися при выполнении количественных опытов, позволяют учащимся самостоятельно делать выводы, выявлять закономерности. Подходы, заложенные в содержание программы курса, создают необходимые условия для системного усвоения учащимися основ науки, для обеспечения развивающего и воспитывающего воздействия обучения на личность учащегося. Формируемые знания должны стать основой системы убеждений школьника, центральным ядром его научного мировоззрения. На базе «Кванториум» обеспечивается реализация образовательных программ естественно-научной и технологической направленностей, разработанных в соответствии с требованиями законодательства в сфере образования и с учётом рекомендаций Федерального оператора учебного предмета «Химия». Образовательная программа позволяет: интегрировать реализуемые подходы, структуру и содержание при организации обучения химии в 8—9 классах, выстроенном на базе любого из доступных учебно-методических комплексов (УМК). Использование оборудования «Кванториум» при реализации данной ОП позволяет создать условия:

- для расширения содержания школьного химического образования;
- для повышения познавательной активности обучающихся в естественно-научной области;
- для развития личности ребёнка в процессе обучения химии, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;
- для работы с одарёнными школьниками, организации их развития в различных областях образовательной, творческой деятельности.

Введение В обучении химии большое значение имеет эксперимент.

Анализируя результаты проведённых опытов, учащиеся убеждаются в том, что те или иные теоретические представления соответствуют или противоречат реальности. Только осуществляя химический эксперимент можно проверить достоверность прогнозов, сделанных на основании теории. В процессе экспериментальной работы учащиеся приобретают опыт познания реальности, являющийся важным этапом формирования у них убеждений, которые, в свою очередь, составляют основу научного мировоззрения. Реализация указанных целей возможна при оснащении школьного кабинета химии современными приборами и оборудованием. Внедрение этого оборудования позволит качественно изменить процесс обучения химии. Количественные эксперименты позволят получать достоверную информацию о протекании тех или иных химических процессах, о свойствах веществ. На основе полученных экспериментальных данных обучаемые смогут самостоятельно делать выводы, обобщать результаты, выявлять закономерности, что однозначно будет способствовать повышению мотивации обучения школьников.

Центры образования естественно-научной направленности «Кванториум» созданы с целью развития у обучающихся естественно-научной, математической, информационной грамотности, формирования критического и креативного мышления, совершенствования навыков естественно-научной направленности, а также для практической отработки учебного материала по учебным предметам «Физика», «Химия», «Биология». Цель и задачи;

- Реализация основных общеобразовательных программ по учебным предметам естественно-научной направленности, в том числе в рамках внеурочной деятельности обучающихся;
- разработка и реализация разноуровневых дополнительных общеобразовательных программ естественнонаучной направленности, а также иных программ, в том числе в каникулярный период;
 - вовлечение учащихся и педагогических работников в проектную деятельность;
- организация внеучебной деятельности в каникулярный период, разработка и реализация соответствующих образовательных программ, в том числе для лагерей, организованных образовательными организациями в каникулярный период;
- повышение профессионального мастерства педагогических работников центра, реализующих основные и дополнительные общеобразовательные программы; Создание центра «Кванториум» предполагает развитие образовательной инфраструктуры общеобразовательной организации, в том числе оснащение общеобразовательной организации:
- оборудованием, средствами обучения и воспитания для изучения (в том числе экспериментального) предметов, курсов, дисциплин (модулей) естественно-научной направленности при реализации основных общеобразовательных программ и дополнительных общеобразовательных программ, в том числе для расширения содержания учебных предметов «Физика», «Химия», «Биология»;
- оборудованием, средствами обучения и воспитания для реализации программ дополнительного образования естественно-научной направленности;
 - компьютерным и иным оборудованием.

Профильный комплект оборудования может быть выбран для общеобразовательных организаций, имеющих на момент создания центра «Кванториум» набор средств обучения и воспитания, покрывающий своими функциональными возможностями базовые потребности при изучении учебных предметов «Физика», «Химия» и «Биология». Перечень: минимально необходимые функциональные и технические требования и минимальное количество оборудования, расходных материалов, средств обучения и воспитания для оснащения центров «Кванториум», определяются Региональным координатором с учётом Примерного перечня оборудования, расходных материалов, средств обучения и воспитания для создания и обеспечения функционирования центров образования естественнонаучной направленности «Кванториум» в общеобразовательных организациях, расположенных в сельской местности и малых городах.

Профильный комплект оборудования обеспечивает эффективное достижение образовательных результатов обучающимися по программам естественно-научной направленности, возможность углублённого изучения отдельных предметов, в том числе для формирования изобретательского, креативного, критического мышления, развития функциональной грамотности у обучающихся, в том числе естественно-научной и математической. Эксперимент является источником знаний и критерием их истинности в науке. Концепция современного образования подразумевает, что в учебном эксперименте ведущую роль должен занять самостоятельный исследовательский ученический эксперимент.

Современные экспериментальные исследования по химии уже трудно представить без использования не только аналоговых, но и цифровых измерительных приборов. В Федеральном Государственном Образовательном Стандарте (ФГОС) прописано, что одним из универсальных учебных действий, приобретаемых учащимися, должно стать умение «проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов».

Учебный эксперимент по химии, проводимый на традиционном оборудовании, без применения цифровых лабораторий, не может позволить в полной мере решить все задачи в современной школе. Это связано с рядом причин:

- традиционное школьное оборудование из-за ограничения технических возможностей не позволяет проводить многие количественные исследования;
 - длительность проведения химических исследований не всегда согласуется с длительностью учебных занятий;
 - возможность проведения многих исследований ограничивается требованиями техники безопасности и др. \

Цифровая лаборатория полностью меняет методику и содержание экспериментальной деятельности и решает вышеперечисленные проблемы. Широкий спектр датчиков позволяет учащимся знакомиться с параметрами химического эксперимента не только на качественном, но и на количественном уровне. Цифровая лаборатория позволяет вести длительный эксперимент даже в отсутствие экспериментатора, а частота их измерений неподвластна человеческому восприятию.

В процессе формирования экспериментальных умений ученик обучается представлять информацию об исследовании в четырёх видах:

- в вербальном: описывать эксперимент, создавать словесную модель эксперимента, фиксировать внимание на измеряемых величинах, терминологии;
- в табличном: заполнять таблицы данных, лежащих в основе построения графиков (при этом у учащихся возникает первичное представление о масштабах величин);
- в графическом: строить графики по табличным данным, что даёт возможность перехода к выдвижению гипотез о характере зависимости между величинами (при этом учитель показывает преимущество в визуализации зависимостей между величинами, наглядность и многомерность);

в виде математических уравнений: давать математическое описание взаимосвязи величин, математическое обобщение. Переход от каждого этапа представления информации занимает довольно большой промежуток времени.

В 8- 9 классах этот процесс необходим, но в старших классах можно было бы это время потратить на решение более важных задач. В этом плане цифровые лаборатории существенно экономят время. Это время можно потратить согласно ФГОС на формирование исследовательских умений учащихся, которые выражаются в следующих действиях:

- определение проблемы;
- постановка исследовательской задачи:
- планирование решения задачи;
- построение моделей;
- выдвижение гипотез;
- экспериментальная проверка гипотез;
- анализ данных экспериментов или наблюдений;
- формулирование выводов.

Последние годы у учащихся наблюдается низкая мотивация изучения естественно-научных дисциплин и как следствие падение качества образования. Поставляемые в школы современные средства обучения, в рамках проекта «Кванториум» содержат как уже хорошо известное оборудование, так и принципиально новое. Это цифровые лаборатории и датчиковые системы.

В основу образовательной программы заложено применение цифровых лабораторий. Тематика предложенных экспериментов, количественных опытов соответствует структуре примерной образовательной программы по химии, содержанию Федерального государственного образовательного стандарта (ФГОС) среднего (полного) общего образования. Рассмотренные в пособии опыты прошли широкую апробацию.

Многолетняя практика использования химических приборов, ЦЛ в школе показала, что современные технические средства обучения нового поколения позволяют добиться высокого уровня усвоения учебного материала, устойчивого роста познавательного интереса школьников, т.е. преодолеть те проблемы, о которых так много говорят, когда речь заходит о современном школьном химическом образовании.

Планируемые результаты освоения учебного предмета «Химия»

с описанием универсальных учебных действий, достигаемых обучающимися.

Личностные результаты

- определение мотивации изучения учебного материала;
- оценивание усваиваемого учебного материала, исходя из социальных и личностных ценностей;
- повышение своего образовательного уровня и уровня готовности к изучению основных исторических событий, связанных с развитием химии и общества;

- знание правил поведения в чрезвычайных ситуациях;
- оценивание социальной значимости профессий, связанных с химией;
- владение правилами безопасного обращения с химическими веществами и оборудованием, проявление экологической культуры. **Метапредметные результаты**

Регулятивные Обучающийся получит возможность для формирования следующих личностных УУД: Обучающийся получит возможность для формирования следующих регулятивных УУД:

- целеполагание, включая постановку новых целей, преобразование практической задачи в познавательную, самостоятельный анализ условий достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале;
 - планирование пути достижения целей;
- установление целевых приоритетов, выделение альтернативных способов достижения цели и выбор наиболее эффективного способа;
- умение самостоятельно контролировать своё время и управлять им; умение принимать решения в проблемной ситуации;
 - постановка учебных задач, составление плана и последовательности действий;
 - организация рабочего места при выполнении химического эксперимента;
- прогнозирование результатов обучения, оценивание усвоенного материала, оценка качества и уровня полученных знаний, коррекция плана и способа действия при необходимости.

Познавательные Обучающийся получит возможность для формирования следующих познавательных УУД:

- поиск и выделение информации;
- анализ условий и требований задачи, выбор, сопоставление и обоснование способа решения задачи;
- выбор наиболее эффективных способов решения задачи в зависимости от конкретных условий;
- выдвижение и обоснование гипотезы, выбор способа её проверки;
- самостоятельное создание алгоритма деятельности при решении проблем творческого и поискового характера;
- умения характеризовать вещества по составу, строению и свойствам;
- описывание свойств: твёрдых, жидких, газообразных веществ, выделение их существенных признаков;
- изображение состава простейших веществ с помощью химических формул и сущности химических реакций с помощью химических уравнений;
- проведение наблюдений, описание признаков и условий течения химических реакций, выполнение химического эксперимента, выводы на основе анализа наблюдений за экспериментом, решение задач, получение химической информации из различных источников;
 - умение организовывать исследование с целью проверки гипотез;

- умение делать умозаключения (индуктивное и по аналогии) и выводы;
- умение объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации. *Коммуникативные* Обучающийся получит возможность для формирования следующих коммуникативных УУЛ:
 - полное и точное выражение своих мыслей в соответствии с задачами и условиями коммуникации;
- адекватное использование речевых средств для участия в дискуссии и аргументации своей позиции, умение представлять конкретное содержание с сообщением его в письменной и устной форме, определение способов взаимодействия, сотрудничество в поиске и сборе информации;
- определение способов взаимодействия, сотрудничество в поиске и сборе информации, участие в диалоге, планирование общих способов работы, проявление уважительного отношения к другим учащимся;
 - описание содержания выполняемых действий с целью ориентировки в предметно- практической деятельности;
 - умения учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
- формулировать собственное мнение и позицию, аргументировать и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
 - осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь; \
- планировать общие способы работы; осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать;
- использовать адекватные языковые средства для отображения своих чувств, мыслей, мотивов и потребностей; отображать в речи (описание, объяснение) содержание совершаемых действий, как в форме громкой социализированной речи, так и в форме внутренней речи;
- развивать коммуникативную компетенцию, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы.

Предметные результаты Обучающийся научится:

- применять основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл закона сохранения массы веществ, атомно-молекулярной теории;
- различать химические и физические явления, называть признаки и условия протекания химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- получать, собирать газообразные вещества и распознавать их;

- характеризовать физические и химические свойства основных классов неорганических соединений, проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- раскрывать смысл понятия «раствор», вычислять массовую долю растворённого вещества в растворе, готовить растворы с определённой массовой долей растворённого вещества;
- характеризовать зависимость физических свойств веществ от типа кристаллической решётки, определять вид химической связи в неорганических соединениях;
- раскрывать основные положения теории электролитической диссоциации, составлять уравнения электролитической диссоциации кислот, щелочей, солей и реакций ионного обмена;
- раскрывать сущность окислительно-восстановительных реакций, определять окислитель и восстановитель, составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химической реакции;
 - характеризовать взаимосвязь между составом, строением и свойствами неметаллов и металлов;
- проводить опыты по получению и изучению химических свойств различных веществ; грамотно обращаться с веществами в повседневной жизни. Обучающийся получит возможность научиться:
- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
 - составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
 - использовать приобретённые знания для экологически грамотного поведения в окружающей среде;
- использовать приобретённые ключевые компетенции при выполнении проектов и решении учебноисследовательских задач по изучению свойств, способов получения и распознавания веществ;
 - объективно оценивать информацию о веществах и химических процессах;
 - осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др. **Формы контроля**

Контроль результатов обучения в соответствии с данной ОП проводится в форме письменных и экспериментальных работ, предполагается проведение промежуточной и итоговой аттестации. Промежуточная аттестация Для осуществления промежуточной аттестации используются контрольно-оценочные материалы, отбор

Кванториум по химии.

Календарно-тематическое планирование для 8-9 классов

(2 часа в неделю всего 68 часов.)

№ п/п	Тема	Содержание	Целеваяустановкаурока	Кол- вочас ов_	Планируемыерезультат ы	Использованне оборудования	Дата план	провед. факт
1	Методы познания в химии. Экспериментальные основы химии	Практическая работа № 1 «Изучение строения пламени» Лабораторный опыт №1	Знакомство с основными методами науки		Умение пользоваться нагревательными приборами	Датчик температуры (термопарный), спиртовка	09.09	
2	Методы познания в химии. Экспериментальные основы химии	итермометра» Лабораторный опыт № 3	Дать представление о точности измерений цифровых датчиков и аналоговых приборов. Знать процессы, протекающие при плавлении веществ и их кристаллизации.	į.	Умение выбирать приборы для проведения измерений, требующих точности показаний. Знать процессы, протекающие при плавлении веществ и их кристаллизации.	Датчик температуры платиновый, термометр, электрическая плитка. Датчик температуры (термопарный	16.09	
3	Первоначальные химические понятия. Чистые вещества и смеси	<u> </u>	Экспериментальное определение дистиллированной и водопроводной воды		Уметь отличать водопроводную воду от дистиплированной, знать, почему для проведения экспериментов используют дистиплированную воду	Датчик электропроводн ости, цифровой микроскоп	23.09	
	Первоначальные химические понятия. Физические и химические явления	I	Изучение химических явлений		I .	Датчик температуры платиновый	30.09	

	вещества. Закон сохранения массы веществ. Классы неорганических соединений. Состав	эксперимент № 2. «Разложение воды электрическим током» Дем. эксперимент № 3. «Закон сохранения массы веществ» Демонстрационный	Изучение явлений при разложении сложных веществ. Экспериментальное доказательство действия закона. Экспериментально определить содержание кислорода в воздухе		протекании реакций молекулы веществ разрушаются, а атомы сохраняются (для веществ	электронные. Прибор для	07.10	
7	Классы неорганических	Практическая работа № 2	Синтез соли из кислоты и оксида металла		Уметь проводить простейшие синтезы неорганических веществ с использованием инструкции	Цифровой микроскоп	21.10	
8	Растворы.	«Изучение зависимости растворимости вещества от температуры» Лабораторный опыт № 6	Исследовать зависимость растворимости от температуры. Показать зависимость растворимости от температуры.	2	Иметь представление о разной зависимости раствор, веществ от температуры. Уметь использовать	Датчик температуры платиновый. Цифровой микроскоп.	28.10	
	Растворы. Кристаллогидраты.	«Пересыщенный раствор» Лабораторный опыт № 8 «Определение температуры	Сформировать понятия «разбавленный раствор», «насыщенный раствор», «пересыщенный раствор». Сформировать понятие «Кристаллогидрат».		различной насыщенности	Датчик температуры платиновый	11.11	

10	Растворы		Сформировать представление о концентрации вещества и количественном анализе		Уметь определять концентрацию раствора, используя инструкцию	Датчик оптической плотности	18.11	
11	Классы неорганических соединений. Основания.	кислот и щелочей»	Сформировать представление о рН среды как характеристики кислотности раствора		Уметь определять рН растворов. Применять умения по определению рН в практической деятельности.	Датчик рН	25.11	
12	Классы неорганических соединений. Химические свойства оснований	Лабораторный опыт № 10 «Реакция нейтрализации». Демонстрационный эксперимент № 5 «Основания. Тепловой эффект реакции гидроксида натрия с углекислым газом»	Экспериментально доказать химические свойства оснований		Понимать сущность процесса нейтрализации и применять процесс нейтрализации на практике	Датчик рН, дозатор объёма жидкости, бюретка, датчик температуры платиновый, датчик давления, магнитная мешалка	02.12	
13	Свойства неорганических соединений	Лабораторный опыт № 11 «Определение кислотности почвы»	Использовать полученные знания для определения кислотности растворов	2	Уметь определять кислотность почв	Датчик рН	09.12	
14	Химическая связь.	Демонстрационный опыт № 6 «Температура плавления веществ с разными типами кристаллических решёток»	Показать зависимость физических свойств веществ от типа химической связи.	2	Уметь определять тип кристаллических решёток по температуре плавления.	Датчик температуры платиновый, датчик температуры термопарный.	16.12	

15	Теория электролитической диссоциации Теория электролитической диссоциации	растворения веществ в воде».	Показать, что растворение веществ имеет ряд признаков химической реакции. Введение понятий «электролит» и кнеэлектролит» Введение понятий «электролит» и кнеэлектролит» и кнеэлектролит»	2	Знать, что растворение — физико-химический процесс. Уметь экспериментально определять электролиты и неэлектролиты. Уметь экспериментально определять электролиты и неэлектролиты.	ости. Датчик	23.12	
17	Теория электролитической диссоциации. Сильные и слабые электролиты. Теория электролитической диссоциации	Лабораторный опыт № 1 «Влияние растворителя на диссоциацию» Лабораторный опыт № 2 «Сильные и слабые электролиты» Лабораторный опыт № 3 «Зависимость электропровод растворов сильных	Сформировать представление о влиянии растворителя на диссоциацию электролита. Экспериментально ввести понятие «слабый электролит» Сформировать представление о зависимости электропров	2	Знать, какое влияние оказывает вода на дисс. вещества. Уметь определять сильные и слабые электролиты с помощью датчика электропровод. Знать зависимость электропроводности растворов от	Датчик электропроводн ости Датчик электропроводн ости	20.01	
19	Теория электролитической диссоциации	электролитов от концентрации ионов». Практическая работа № 2 «Определение концентрации соли по электропроводности раствора»	растворов от концентрации ионов. Закрепить представление о зависимости электропроводности растворов от концентрации ионов	2	концентрации ионов. Уметь экспериментально определять концентрацию соли в растворе с помощью датчика электропроводности		03.02	
20	Теория электролитической диссоциации. Реакции ионного обмена	Лабораторный опыт № 4 «Взаимодействие гидроксида бария с серной кислотой» Лабораторный опыт № 5	Исследовать особенности протекания реакции нейтрализации. Экспериментально показать образование	2	Применять знания о	ости, дозатор объёма	10.02	

24	Неметаллы. Галогены	Демонстрационный опыт № 3 «Изучение физических и химических свойств хлора»	Экспериментальное изучение физических и химических свойств хлора	2	Знать физические и химические свойства галогенов. Уметь записывать уравнения реакций галогенов с металлами, неметаллами.	Аппарат для проведения химических процессов (АПХР)	16.03	
25	Проектная деятельность	Разбор и обсуждение различных тем на которые можно написать проекты.	Развитие умения учащихся делать различные проектные работы по химии	2	Уметь оформлять проектную работу по своей теме	Интерактивная доска и ПК.	23.03	
26	Галогены	Практическая работа № 3 «Определение содержания хлорид-ионов в питьевой воде»	Определить содержание хлорид-ионов в исследуемых растворах	2	Уметь применять ноноселективные датчики	Датчик хлорид- ионов	30.03	
27	Сероводород, сульфиды	Демонстрационный опыт: «Получение сероводорода и изучение его свойств». Лабораторный опыт: «Синтез сероводорода. Качественные реакции на сероводород и сульфиды»	Изучить лабораторные способы получения сероводорода, его свойства и свойства сульфидов	2	Знать лабораторные способы получения сероводорода, его физ. и химические свойства. Уметь проводить качест. реакции на сероводород и соли сероводородной кислоты.	Аппарат для проведения химических реакций (АПХР), прибор для получения газов или аппарат Киппа	06.04	
28	Неметаллы. Оксиды серы. Сернистая кислота	Демонстрационный опыт № 4«Изучение свойств сернистого газа и сернистой кислоты»	Изучить свойства сернистого газа	2	Знать физические и химические свойства серпистого газа. Уметь записывать уравнения реакций газа с водой, со щелочами	Аппарат для проведения химических реакций (АПХР)	13.04	
29	Неметаллы. Аммиак	Лабораторный опыт № 9 «Основные свойства аммиака»	Экспериментально доказать принадлежность раствора аммиака к слабым электролитам		Знать, что раствор аммиака в воде – слабый электролит. Уметь определять это свойство с помощью датчика	Датчик электропроводн ости	20.04	

30	Оксид азота (IV)	и изучение его свойств»; «Окисление оксида азота (II) до оксида азота (IV)»; «Взанмодействие оксида азота (IV) с водой и кислородом, по- лучение азотной кислоты»		(IV) в производстве азотной кислоты	Герморезисторный датчик температуры, датчик рН, датчик электропроводности, аппарат для проведения хим реакций	27.04	
31	Азотная кислота и её соли	Практическая работа № 4 «Определение нитрат- ионов в питательном растворе»	Экспериментально определить содержание ни- трат-ионов в растворах	Уметь использовать ионоселективные датчики для определения ионов	Датчик нитратионов	04.05	
32	Минеральные удобрения	Лабораторный опыт № 10 «Определение аммиачной селитры и мочевины»	Экспериментально различать мочевину и минеральные удобрения	Уметь экспериментально определять мочевину	Дагчик электропроводн ости	11.05	!
33	Металлы. Кальций. Соединения кальция		Экспериментально установить образование средней и кислой соли	соединений кальция и его значение в природе и	Датчик электропровод, магнитная мешалка, прибор для получения газов	18.05	
34	Металлы. Железо	«Окисление железа во влажном	Исследовать процесс электрохимической коррозии железа в воздухе	Знать, что процесс коррозии металлов протекает в присутствии воды и кислорода. Знать факторы, ускоряющие процесс коррозии	Датчик давления	25.05	

итого: